二次函數(shù)的教學(xué)反思
二次函數(shù)作為初中階段學(xué)習(xí)的重要函數(shù)模型,對理解函數(shù)的性質(zhì),掌握研究函數(shù)的方法,體會函數(shù)的思想是十分重要的,下面給大家分享二次函數(shù)的教學(xué)反思,一起來看看吧!

二次函數(shù)的教學(xué)反思1
二次函數(shù)是學(xué)生學(xué)習(xí)了正比例函數(shù),一次函數(shù)和反比例函數(shù)以后進一步學(xué)習(xí)函數(shù)知識,是函數(shù)知識螺旋發(fā)展的一個重要環(huán)節(jié),二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時所采用的重要方法之一,也是某些簡單變量最優(yōu)化問題的數(shù)學(xué)模型。和一次函數(shù),反比例函數(shù)一樣,它也是一種非;镜某醯群瘮(shù),對二次函數(shù)的.研究將為學(xué)生進一步學(xué)習(xí)函數(shù),體會函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗。
本節(jié)課的具體內(nèi)容是讓學(xué)生理解二次函數(shù)的概念,會判斷一個函數(shù)是否是二次函數(shù),并能夠用二次函數(shù)的一般形式解決一些問題。為此,我先帶領(lǐng)學(xué)生復(fù)習(xí)了什么是一次函數(shù),然后設(shè)計具體的問題情境讓學(xué)生自己“推導(dǎo)”出一個二次函數(shù),并觀察、總結(jié)它與一次函數(shù)有什么不同。在此基礎(chǔ)上,逐步歸納出二次函數(shù)的一般解析式:y=ax+bx+c(a,b,c是常數(shù),a≠0)。最后,通過隨堂練習(xí)鞏固二次函數(shù)的概念并解決一些簡單的數(shù)學(xué)問題。
我個人以為,本節(jié)課的成功之處是:
教學(xué)時,通過實例引入二次函數(shù)的概念,讓學(xué)生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型,通過學(xué)習(xí)求一些簡單的實際問題中二次函數(shù)的解析式,大部分學(xué)生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述,研究變量之間變化規(guī)律的意義。讓學(xué)生終生受用的思考方法,使學(xué)生的思維水平有所提高。這樣不僅提高了學(xué)生獨立發(fā)現(xiàn)問題、解決問題的能力,避免學(xué)習(xí)落入程式化的窠臼,而且也讓學(xué)生體驗到了成功的快樂。
二次函數(shù)的教學(xué)反思2
昨天我們學(xué)習(xí)了用函數(shù)的觀念看一元二次方程,我通過類比引出二次函數(shù)與一元二次方程之間的關(guān)系,并結(jié)合具體的實例討論了一元二次方程的實根與二次函數(shù)圖象之間的聯(lián)系,然后介紹了用圖象法求一元二次方程近似解的過程。這一節(jié)是反映函數(shù)與方程這兩個重要數(shù)學(xué)概念之間的聯(lián)系的內(nèi)容。
由于九年級學(xué)生已經(jīng)具備一定的抽象思維能力,再者,在八年級時已經(jīng)學(xué)習(xí)了一次函數(shù)與一元一次方程的關(guān)系,因而,采用類比的方法在學(xué)生預(yù)習(xí)自學(xué)的基礎(chǔ)上放手讓學(xué)生大膽地猜想、交流,分組合作,同時設(shè)定一定的問題環(huán)境來引導(dǎo)學(xué)生的探究過程,最后在老師的釋疑、歸納、拓展、總結(jié)的過程中結(jié)束本節(jié)課的教學(xué)。在知識掌握上,學(xué)生對二次函數(shù)的圖象及其性質(zhì)和一元二次方程的`解的情況都有所了解,對于本節(jié)所要學(xué)習(xí)的二次函數(shù)與一元二次方程之間的關(guān)系利用類比的方法讓學(xué)生在自學(xué)的基礎(chǔ)上進行交流合作學(xué)習(xí)應(yīng)該不是難題。本節(jié)課的知識障礙,本節(jié)課的主要目的在于建立二次函數(shù)與一元二次方程之間的聯(lián)系,滲透數(shù)形結(jié)合的思想,而不僅僅是利用函數(shù)的圖象求一元二次方程的近似解。
總之,在教學(xué)過程中,我始終遵循著“有效的數(shù)學(xué)學(xué)習(xí)活動不能單獨地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)習(xí)數(shù)學(xué)的重要方式!边@一《新課程標(biāo)準(zhǔn)》的精神,注意發(fā)揮學(xué)生的主體作用,讓學(xué)生通過自主探究、合作學(xué)習(xí)來主動發(fā)現(xiàn)問題、提出問題、解決問題,實現(xiàn)師生互動,通過這樣的教學(xué)實踐取得了一定的教學(xué)效果,我再次認(rèn)識到教師不僅要教給學(xué)生知識,更要培養(yǎng)學(xué)生良好的數(shù)學(xué)素養(yǎng)和學(xué)習(xí)習(xí)慣,讓學(xué)生學(xué)會學(xué)習(xí),使他們能夠在獨立思考與合作學(xué)習(xí)交流中解決學(xué)習(xí)中的問題。
二次函數(shù)的教學(xué)反思3
二次函數(shù)是初中階段研究的一個具體、重要的函數(shù),在歷年來中考題中都占有較大的分值。二次函數(shù)不僅和學(xué)生前面學(xué)習(xí)的一元二次方程有著密切的聯(lián)系,而且對培養(yǎng)學(xué)生“數(shù)形結(jié)合”的數(shù)學(xué)思想有著重要的作用。而二次函數(shù)的概念是后面學(xué)習(xí)二次函數(shù)的基礎(chǔ),在整個教材體系中起著承上啟下的作用。
本節(jié)課的內(nèi)容是讓學(xué)生理解二次函數(shù)的概念,會判斷一個函數(shù)是否是二次函數(shù),并能夠用二次函數(shù)的一般形式解決實際問題。為此,先讓學(xué)生復(fù)習(xí)了函數(shù)及一次函數(shù)的相關(guān)內(nèi)容,然后設(shè)計具體的問題情境讓學(xué)生自己推導(dǎo)出一個二次函數(shù),并觀察、總結(jié)它與一次函數(shù)的不同,在此基礎(chǔ)上逐步歸納出二次函數(shù)的一般表達式,最后通過習(xí)題鞏固二次函數(shù)的概念并解決一些簡單的數(shù)學(xué)問題。
我個人認(rèn)為,本節(jié)課的成功之處是:一是在教學(xué)設(shè)計上“步步為營”,學(xué)生的思維能力“層層提高”。在教學(xué)設(shè)計上,根據(jù)內(nèi)容的`需要,我合理設(shè)計具有針對性的問題,借助學(xué)生已有的知識展開教學(xué),通過解決問題,充分激發(fā)學(xué)生的求知欲,調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性。
二是在學(xué)習(xí)的過程中,不僅注重對學(xué)生知識的教授,更注重教給學(xué)生學(xué)習(xí)和思考的方法,提高學(xué)生獨立發(fā)現(xiàn)問題、解決問題的能力,讓學(xué)生時時體驗到成功的快樂。
三是在整個教學(xué)過程中,注重不同層次學(xué)生的發(fā)展,不同的學(xué)生的個體差異,再加上受教學(xué)目的等因素的限制,導(dǎo)致一些學(xué)有余力的學(xué)生會感到吃不飽現(xiàn)象,因此在后面的練習(xí)設(shè)計中,也有針對性的習(xí)題,對這部分學(xué)生提高也是很有幫助的。
不足之處表現(xiàn)在:
1、由于學(xué)生對一次函數(shù)的遺忘,因此復(fù)習(xí)占用的太多的時間,導(dǎo)致課后練習(xí)沒完成。
2、學(xué)生自學(xué)環(huán)節(jié),要求不夠細(xì)致,學(xué)生學(xué)的不夠深入只是看了教材,而未挖掘出教材以外的東西。
3、由于時間緊張小結(jié)的不夠完整。
總之,本節(jié)課的教學(xué),雖取得了一些成績。但也暴露出了許多問題。今后在教學(xué)中我一定吸取教訓(xùn),努力改正自己的不足,提高自己的教學(xué)上水平。
二次函數(shù)的教學(xué)反思4
這節(jié)課在學(xué)習(xí)了二次函數(shù)的基本形式和二次函數(shù)的圖象、頂點坐標(biāo)、對稱軸等性質(zhì)的基礎(chǔ)上來學(xué)習(xí)用二次函數(shù)解決實際問題。學(xué)生對前面所學(xué)的知識已經(jīng)掌握,但綜合應(yīng)用能力較差。因此在教學(xué)設(shè)計時將本節(jié)知識分兩課時進行,這節(jié)是第一課時,從課堂上學(xué)生的反應(yīng)和課堂練習(xí)可知本節(jié)課教學(xué)效果較好,大部分學(xué)生能準(zhǔn)確分析題意并能寫出函數(shù)關(guān)系式,培養(yǎng)了學(xué)生理論聯(lián)系實際的能力和分析問題的能力;但在確定自變量的取值范圍和函數(shù)的`最值時只有少數(shù)學(xué)習(xí)較好的學(xué)生能準(zhǔn)確解答,這說明稍復(fù)雜的數(shù)量關(guān)系分析是學(xué)生的難點,單一的知識應(yīng)用能準(zhǔn)確找到解決途徑,而綜合起來應(yīng)用學(xué)生就有些茫然,無法確定切入點。
本節(jié)課在兩個地方學(xué)生出現(xiàn)疑難:一是分析題意時理不清價格和數(shù)量之間的對應(yīng)關(guān)系;二是不能準(zhǔn)確判斷自變量的取值范圍和函數(shù)的最值。對于這些難點我是這樣處理的:
首先在回顧了前面的知識點后提出實際問題:某商品現(xiàn)在的售價為每件60元,每星期可賣出300件。市場調(diào)查反映:如調(diào)整價格,每漲價1元,每星期要少賣出10件;每降價1元,每星期可多賣出20件。已知商品的進價為每件40元,如何定價才能使利潤最大?在分析題意時學(xué)生能分清漲價、降價所對應(yīng)的商品銷量,但一小部分學(xué)生依教材上的解題思路不能理解售價和銷量之間的對應(yīng)關(guān)系。對于這個難點我是這樣處理的:設(shè)每漲x個1元,則每件售價為(60+x)元,少賣出10x件,共賣出(300—10x)件;每降價x個1元,則每件售價為(60-x)元,多賣出20x件,共賣出(300+x)件。重點強調(diào)“x個”!雖然在分析中只多了個“每(漲或降)…個1元”,但就這幾個字卻能幫一部分學(xué)生理清關(guān)系和思路,如漲3元8元的問題,則售價為(60+3x)元或(60+8x)元,這樣學(xué)生從最小單元開始分析,逐層遞進,很容易理清思路找準(zhǔn)關(guān)系。這個關(guān)系弄清了,函數(shù)關(guān)系自然水到渠成就寫出來了。
其次是由函數(shù)解析式確定最大值,而確定最值時必須考慮實際問題中自變量的取值范圍。在這個問題中x首先是非負(fù)數(shù),同時(300—10x)也是非負(fù)數(shù),所以x大于等于0且小于等于30。結(jié)合函數(shù)解析式y=-10x2+100x+6000可知該函數(shù)圖象開口向下,有最大值。由頂點坐標(biāo)公式可以計算出當(dāng)x=5時(在自變量的取值范圍內(nèi)),y有最大值,且此時y=6250。強調(diào)此時不僅要考慮頂點坐標(biāo)公式,還要結(jié)合題意看這個x值是否在其取值范圍內(nèi)。x值確定后將其代入就可求出最值y的大小。
從學(xué)生課堂練習(xí)來看,大部分學(xué)生會用這個分析方法解決相應(yīng)問題。雖然這節(jié)課沒能按課時安排學(xué)習(xí)探究二的問題,但學(xué)生能掌握商品漲(降)價與售價、利潤間這類問題的分析并會列函數(shù)關(guān)系也算是一點點收獲了。
【二次函數(shù)的教學(xué)反思】相關(guān)文章:
二次函數(shù)教學(xué)反思05-02
二次函數(shù)教學(xué)反思04-16
二次函數(shù)應(yīng)用教學(xué)反思11-02
二次函數(shù)單元教學(xué)反思05-02
關(guān)于二次函數(shù)的教學(xué)反思04-27
二次函數(shù)復(fù)習(xí)教學(xué)反思05-06